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Abstract—The velocity distribution in fully developed turbulent flow in an annulus is investigated
using Goldstein’s [1] extension of the similarity hypothesis of von Karman. The theoretical result is
compared with the experimental data of various investigations. The validity of the similarity theory
in the study of turbulent flow in an annulus is examined using the measurements of the turbulence
characteristics of Brighton and Jones [2]. The results indicate that the adoption of the theory is justi-
fied in the outer region of the flow only, i.e. outside the radius of maximum velocity. A particular
form of the theory, which was found [1] to predict the velocity distribution accurately in the simpler
pipe flow geometry, is used in the annulus study. The analysis of the annular flow is such that the
computed results for the pipe can then be used to advantage.

The simpler correlations for the velocity distribution in the form of the “law of the wall” are briefly
discussed, and the inadequacy of these in the inner region of the flow, i.e. inside the radius of maximum
velocity, is pointed out. For completeness, a simple modified equation of a semi-empirical nature is
presented. The final result for the inner region is compatible with the results for the limits of the annular
geometry, viz. the pipe and the parallel wall channel. It is noted that the velocity distribution in the

outer region of the annulus is accurately described using the simiple logarithmic laws.

NOMENCLATURE 1, inside radius of maximum
b, by, bs, A, B, k, k1, ks, constants; ’ velocity, rm, or inner wall;
I, mixing length, or character- 2, outside radius of maximum
istic length; velocity, rm, or outer wall;
u, v, W, velocities (i in the direction of m, point of maximum velocity;
the mean flow); g, value of the outer radius in
u1, v1, Wi, fluctuations of velocities; pipe flow.
u, = +/(rw/p), friction velocity;
ut =ufu_, friction velocity parameter; Superscripts
yt =yufv, friction distance parameter; A single dot denotes first differential coefficient
7, shear stress; with respect to radius.
r, radius; A double dot denotes second differential
n == rfro, 0 = rjrs, b = r/r1, dimensionless  coefficient with respect to radius.
radii;
a == Fofry, radius ratio; 1. INTRODUCTION
Ps density; THE LAWS of the velocity distribution in tur-
v, kinematic viscosity; bulent flow adjacent to a solid boundary and in
N1, fa, functions; ducts are essentially of a semi-empirical nature.
¥, distance from a wall. The ideas, concepts and theories are well known,
and are recorded in standard works in fluid
Suffixes mechanics and heat transfer.
w, wall; A major contribution in this field of study is

* The Department of Mechanical Engineering, The
University of Liverpool.

t The Department of Mechanical Engineering, The
College of Technology, Liverpool.

the similarity theory of von Kdrméan. In the
present work, Goldstein’s [1] extension of
Kérman’s theory to axisymmetric flow is of
special interest and it suffices here to present the
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results of this work. According to Goldstein [1],
for three dimensional turbulence, the character-
istic length, the stress and the rate of transfer of
(7. r) are respectively given by

(i) |7] — pl2a2

)

|
0 b
and (i) é(} (rr) — pl2a . (ii — 1jr) |
We pay particular attention to (iii) of equation
(1), because this leads to an equation which
shows excellent agreement with the observed
velocity data in pipe flows. The final result for
the velocity is given by Goldstein [1], as
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where n == r/ro, and the constants k and b are
chosen so as to make the equation suit the
experimental data over the region where the
hypothesis is most likely to be valid.

In this work, we will examine the velocity
distribution in axisymmetric turbulent flow in an
annulus. Goldstein’s theory will be employed
because it accurately predicts the velocity distri-
bution in axisymmetric flow in a pipe.

2. VELOCITY DISTRIBUTION OF TURBULENT
FLOW IN AN ANNULUS

A brief outline of some of the methods of
correlation of turbulent flow in an annulus has
been given by Barrow [3].

Probably the simplest approach which is
used, is to employ the familiar logarithmic law
for zero pressure gradient, that is:

wt = (1/k)Inyt + B 3)

According to Goldstein [4], this equation might
be expected to apply to pressure flows to a first
approximation. In the annulus, equation (3) has
been employed with the same constants as those
used in the pipe. For example, Deissler and
Taylor [5] have (used k = 0-36 and B = 3-8 for
the regions inside and outside the radius of
maximum velocity, but in the light of recent
reliable measurements [6] it is debatable whether
or not a single form of the equation is valid.
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A further difficulty exists in the case of tur-
bulent annular flow. The position of zero shear
is unknown and as a consequence, the wall
stresses cannot be determined. It is sometimes
assumed that the radii of zero shear and maxi-
mum velocity and the radius given by Lamb [7]
are coincident. In Section 5, the experimental data
is evaluated using the actual radius of maximum
velocity ; the theoretical work is based on Lamb’s
radius. Little error is involved in this procedure
provided « is not much larger than 3. In both
cases, zero stress is assumed to occur at the
radius of maximum velocity.

It would appear that an equation of the form.

: I 0
ut ":f](a) * K In Ve "/Z(U') . B {4

would be more in keeping with the pipe resuli,
but an examination of the experimental data
suggests that modification of the pipe equation is
necessary only in the region inside r,,, the values
of fi(a) and fa(e) being given in Appendix I.

Rothfus, Monrad and Senecal {9] have used
equation (3) for the annulus, the *“wall distance™
being a complex function of the actual wall
distance. With ' = u/u,s. the equation was
found to be valid both inside and outside r,
and more recent data [6] are found to be in
support of this correlation.

It can be seen that attempts to correlate
velocity distribution in the annulus have been
largely influenced by the well established results
for the pipe. In some respects this has tended to
suppress more detailed investigations which have
their origin in the study of the fundamentals of
the flow. In the following section, the velocity
in turbulent flow in the annulus is studied using
one set of the basic results of the similarity
hypothesis according to Goldstein [1]. It 1s first
necessary to ascertain that the assumptions made
in the theory are adequately fulfilled by the flow
conditions in the annulus. In this connection, the
turbulence characteristics in the annulus will be
examined along with those for the simpler pipe
flow. This might be of some help in assessing the
accuracy of the final result.

3. TURBULENCE CHARACTERISTICS
It appears that little has been done in the
measurement of turbulence characteristics in
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annular flows. Probably the most recent data on
velocity fluctuations in turbulent flow in an
annulus is that of Brighton and Jones [2]. Some
of their data has been compiled in a form which is
more suitable for present purposes, and is shown
in Fig. 1, along with some results of Laufer for
pipe flow [10], (see also reference 8).
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FiG. 1. Turbulence characteristics.

We note that in the similarity theory, the
stant. This is clearly not so in either flow
geometry, the greatest departure from the
assumption occuring in the region of zero stress
and near the wall where for example the value of
101 approaches zero. In these regions therefore,
we must not expect good agreement with theory
in either geometry. The most interesting feature
of the data for the annulus geometry is the
variation in the quantity u1v1/u2 across the flow
section and its dependency on the radius ratio,
a. In the outer region M/ﬁf is fairly constant,
whereas inside the radius of maximum velocity
there is a noticeable dependency of the value of

H.M.—4Y

1501

this ratio on both position and radius ratio.
Brighton and Jones [2] have already observed
that the pronounced curvature of the curve of
urv1/u, in the inner region of an annulus is
accompanied by a marked departure of the
velocity distribution from the law of the wall.
The large variation of #1v1/u2 in the inner region
must also lead to large deviations from a
prediction based on the similarity hypothesis
which assumes a constant value for this ratio.
It can be clearly seen by comparing Figs. 1(a) and
(b), that the magnitude and distribution of the
turbulence characteristics in the pipe and annuli
are not markedly different outside rx, but inside
rm there is poor agreement particularly as far as
the ratio involving vy is concerned.

It is concluded therefore, that the assumption
concerning the ratios #2 etc. is satisfactorily
met with in the outer region of an annulus while
inside the radius of maximum velocity the
situation is far from the idealised one. It will be
seen later, when the theoretical and experimental
velocity distributions are compared, that there is
excellent agreement in the outer boundary layer.
The agreement in the inner region is however
disappointing.

With these observations on the turbulence
characteristics in mind, we now proceed to
derive a velocity law for turbulent flow in an
annulus. It is felt that the observations on the
similarity between the turbulence parameters in
the pipe and annulus provide adequate justifica-
tion for using similar approaches for the de-
termination of velocity distributions.

This is certainly true in the outer area; in the
inside region of an annulus, the procedure is
questionable and less likely to yield a good
correlation.

4. THEORETICAL ANALYSIS

(i) Velocity distribution outside the radius of
maximum velocity
The shear stress, 7, in an annulus is written,

rn [r2—r2
r=1w1.~'[2 ’g](r2>r>rm). %)
rolr2 —r}

Equation (5) is easily derived from momentum
considerations assuming that zero stress occurs
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at ryr. With the expression for /, equation (1) (iii)
then becomes

B — a K2 Twl -
(lf,,.i/r) PRy ere 4 - (;wi__r_&) ©
With 8 = (r/r2), « = (re/r1) and dujor ~ —
very near to the outer wall, equation (6) can be
integrated to

o ,,\@’ LUl 0 7 | 7
ke VL — 1Y) v (1 — ey D
On integrating equation (7) and substituting the

appropriate boundary conditions, an equation
for the velocity defect is obtained as

P‘zﬂ?“) U SR I N
( un ) »\/ @ ks /[0 — (1/a)2]

0

)
Gm
An alternative and more useful form of the last
equation is possible using Lamb’s result for
rm, and 72 from equation (5). Equation (8) is
then transformed into

u

(‘_’f.ﬂ_if,’) Vb J _b.do
Ura ke " 4/1 — 62 ) /(1 —69)
[

)
where by serves to improve the agreement be-
tween the theoretical result and the experi-
mental values.

Goldstein’s tabulated values of the integral
junction of equation (2) can be used to advantage
here, because the integral in equation (9) can be
written as

0 4

0 0
[va"m ] va" me

0. 3]
0.,

0
R [ Vi ey 4010
O
It is worth noting that the integrals on the right
hand side of equation (10) are related to the

Incomplete Beta Function*, B,(2/3, 1/2).

© * The Incomplete Beta Function, B, (p, g), is defined as

x
Bz(p,q) = [ a7 1. (1 — x)771  du.
(4]
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In any particular problem, the value of the
last integral in equation (10) is constant, where-
as the second integral is tabulated [1]. The
compatability of the final result with the pipe
result is to be noted; as ry—0, 05— 0 and
Equations (2) and (10) are then identical.

ity Velocity distribution inside the radius of
maximum velocity

A similar analysis to that described in Section
4 (i) vields
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where ¢ = (r/r1). k1 and b are chosen for the
best fit of equation (11) to the inner region data.

5. COMPARISON BETWEEN THE THEORETICAL
PREDICTION AND EXPERIMENTAL RESULTS IN
ANNULAR FLOW

Figures 2(a) and 2(b) show a wide variety of
experimental data for annular flow plotted in the
usual manner, the Reynolds numbers and the
radius ratios being as indicated.

A close examination of the points in Fig. 2(a)
(outer region) will show that, with the exception
of the data for o = 80-72, there is no detectable
dependency on Reynolds nunmber. The annulus,
for which « == 80-72, shows [6] a radius of
maximum velocity very much less than that
predicted by Lamb [7] for laminar flow. The data
for the more practical values of « are in very
good agreement with the theoretical curve over
the middle region, when b2 == - 0-8 and ky -~
-+0-148.

The corresponding values for the inner region
are plotted in Fig. 2(b). Here there is little
effect of the Reynolds number but a marked
dependency on the radius ratio. 1t is evident that
it is impossible to correlate the inner velocities
by a single equation, but equation (1}) with
by = — 08 and ky = +0-148 is shown for
comparison purposes.

A possible reason for the discrepancy be-
tween theory and practice for the region inside
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Fic. 2. The velocity distribution in turbulent flow in an annulus, and its correlation.

{a) Outside radius of maximum velocity.

rm has already been given in the Section on
Turbulence Characteristics. The assumption that
(uv1/u); is constant is not fulfilled there, and
the value of this ratio appears to be a function
of both position and radius ratio. The excellent
agreement between the theory and experiment for
practical radius ratios outside the radius of
maximum velocity is in accordance with the

constancy of (u101/u)z in that that region.

6. CONCLUSIONS

It has been found that the use of a form of the
similarity theory of Goldstein [1] is justified in
predicting the velocity distribution outside the
radius of maximum velocity in turbulent
annular flow. An explanation for the difference
between theory and experiment in the inner
region has been given.

While the modified “laws of the wall” are of
more direct use, the present analysis and con-
siderations afford a deeper insight into the
understanding and the prediction of the tur-
bulent velocity field. There is accordingly a need
for further detailed measurements of the nature

(b) Inside radius of maximum velocity.

and structure of turbulent flow in the annulus
geometry. The position of the radius of maxi-
mum velocity can, for example, be measured
accurately by direct experimentation but the
location of the position of zero shear is as yet
undetermined. We have found that the follow-
ing expression correlates all the data for the
radius of maximum velocity used in this paper:

o2 — 1 1)0-027
m=n.J(5m2) G) (12

(a not greater than 10)

Compared with the empirical correlation of
Leung, Kays and Reynolds [12], equation (12)
predicts a smaller deviation from Lamb’s radius
of maximum velocity.
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APPENDIX
For engineering purposes, a modified “law of
the wall” is adequate for the correlation of the
velocity distribution inside the radius of maxi-
murm velocity, and here we derive an equation of
the form
Tyt kL) B (A

ut

_Ni(o)
=L

To determine fi1(e) and fi(a), a whole range of
data {2, 3, 6, 8, 11] has been examined. It should
be noted that outside rs,, the simple form of
equation (A.1) viz. equation (3) suffices, f1{e) and
Jo(a) both having a value equal to unity. It is
difficult to determine the best values of k and B;
both Deissler’s law [5] and the Prandtl-Nikuradse
law fit the data well. The agreement between
equation (3) and the data for the outer region of
the annulus might be expected, because the
ratio of the boundary layer thickness to outer
wall radius is often much less than that for the
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Fig. Al. The determination of ihe “‘constants™ in the
“modified law of wall” for the inner region of the
annular flow.

pipe and consequently the lateral curvature
effects are reduced. Inside ry,, however, thereis a
pronounced curvature effect of the inner wall,
and f1(«) and f2(a) are found [6] to depend on «.

Figure Al shows various values of fi(a)/k
and fo{a). B. The shapes of the curves are such
that f1(a)/k and fa(a). B take the accepted values
for symmetrical two dimensional flow when
(1/a)--> 1, which must be the case if the corre-
lation is to be meaningful. The recommended
equations are:

1 0353
() fil@)k — 27 (Q)
and

(i) fala). B — 36. (i)

~0-439
(fore <

1t should be noted that in determining this
correlation reference need not be made to the
position of maximum velocity.
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Résumé—La distribution de vitesse dans un écoulement turbulent entiérement développé & l'intérieur
d’un tuyau annulaire est étudié en utilisant ’extension par Goldstein [1] de Phypothése de similitude
de von Kidrméan. Le résultat théorique est comparé avec les données expérimentales de plusieurs
études. La validité de la théorie de la similitude dans I’étude de I'écoulement turbulent dans un tuyau
annulaire est examiné en employant les mesures des caractéristiques de turbulence de Brighton et
Jones [2]. Les résultats indiquent que l'adoption de la théorie est justifiée dans la région
externe seulement de Pécoulement, C'est-d-dire en dehors du rayon de vitesse maximale. Une
forme particuliére de la théorie, que 'on avait trouvée [1] prédire avec précision la distribution de
vitesse dans la géométrie plus simple d’un écoulement dans un tuyau circulaire, est employée dans
Pétude du tuyau annulaire. La théorie de I'écoulement annulaire est telle que les résultats calculés
pour le tuyau circulaire peuvent alors étre utilisés avantageusement.

Les corrélations plus simples pour Ia distribution de vitesse de la forme de la “loi de la paroi” sont
discutées briévement, et I'insuffisance de ces corrélations dans la région interne de I’écoulement,
cest-a-dire 4 'intérieur du rayon de vitesse maximale, est signalée. Enfin, une équation modifiée simple
et de nature semi-empirique est présentée. Le résultat final pour la région interne est compatible avec
les résultats pour les limites de la géométrie annulaire, par exemple le tuyau circulaire et la conduite 2
parois paralléles. On a remarqué que la distribution de vitesse dans la région externe du tuyau annulaire

est décrite avec précision A I"aide de lois logarithmiques simples.

Zusammenfassung—Die Geschwindigkeitsverteilung bei voll ausgebildeter turbulenter Strémung im
Ringspalt wird mit Hilfe der Erweiterung der von Karmanschen Ahnlichkeitshypothese nach Gold-
stein [1] untersucht. Das theoretische Ergebnis wird mit experimentelien Daten verschiedener Unter-
suchungen verglichen. Die Giiltigkeit der Ahnlichkeitstheorie fiir turbulente Strdmung im Ringspalt
wird auf Grund der Messungen der Turbulenzcharakteristiken von Brighton und Jones [2] nachgepriift.
Die Ergebnisse zeigen, dass die Annahme der Theorie nur fiir den dusseren Bereich der Stromung,
d.h. ausserhalb des Radius grosster Geschwindigkeit gerechtfertigt ist. Eine besondere Form der
Theorie {1] nach der sich die Geschwindigkeitsverteilung in der einfacheren Rohrstrémung genau
bestimmen l4sst wurde fiir die Ringspaltuntersuchung verwendet. Fiir die Analyse der Ringstromung
werden die Rechenergebnisse fiir das Rohr vorteilhaft angewandt. Die einfacheren Korrelationen
fiir die Geschwindigkeitsverteilung in Form des “Wandgesetzes™ sind kurz diskutiert und auch ihre
Unzuléssigkeit fiir den inneren Bereich der Strémung, d.h. innerhalb des Radius grésster Geschwin-
digkeit dargelegt, Zur Vervollstindigung wird eine einfache modifizierte Gleichung halbempirischer
Natur angegeben. Das Endergebnis fiir den inneren Bereich ist vertriglich mit den Ergebnissen fiir
die Grenzen der Ringspaltgeometrie, nimlich dem Rohr und dem parallelwandigen Kanal. Es ist
gezeigt, dass die Geschwindigkeitsverteilung im dusseren Bereich des Ringspaltes mit Hilfe einfacher
logarithmischer Gesetze beschrieben werden kann.

Anporanms—Pacnpegesenye CKOPOCTH B HOJHOCTBIO PasBHUTOM TypOYJIEHTHOM IIOTOKE B
KOJIBIIEBOM KaHaJle NCCIENOBANOCH ¢ IIOMOIIBI0 0GofmenHolt ['OnbRIITEAHOM THIIOTESH I0-
ro6usn Kapmana. IIpuBeeHo cpaBHeHUe TEOPETUULCKOTO PERYIABTATA € DKCIEPUMEHTANLHEIMY
AQHHBIMHE MHOTMX MCclefoBaHuii. CpaBelMBOCTL TEODHMM IOJOCHMA AMA uBydeHMA TypOy-
JIEHTHOTO IOTOKA B KOJIBIEBOM HaHAJe NPOBEPAETCH, UCHONB3YH N3MEPEHHH TYpOYIeHTHRX
xapaxrepuctur bpaiitona m Jlwonca. PesynpraThl MOKasbIBAIOT, 4TO BTA TEOPMA IDH-
MeHUMa TOJBKO JJIA BHelIHelf 06IacTy HOTOKA, T.e. 33 PAfUyCOM MAKCUMAILHON CKOPOCTH,
Jns usydeHUA UPOLeECcOB B KOJNBIEBOM KaHale MCHONb3yercd ocofas Qopma Teopmu,
Koropan, coriacuo pafore [I], maer BoIMOKHOCTD NpeACcKasaTh PacHpefeNeHns CROPOCTH
noToKOB B Tpybax ¢ Gosee mpocToit reomerpmell. AHAaM3 MOTOKA B KOJBLUEBOM Kapajie
HOCTPOSH TAaK, YTO JIAHHEIe, NOJIyYeHHHe JJA TPYOsl, MOMKHO ¢ YCIEXOM UCIOXB30BAThH JIIA
APYTUX CHy4YaeB.

Hparro pacemarpusalorcst Gosiee HPOCTHE KOPPENANHN IS DACHPENENIGHHA CKOPOCTH B
BHJIE «3aKOHA CTEHHM» M OTMEYaeTCH UX HeJOCTATOYHOCTL BO BHYTpeHHell 06jIacTH mOTOKa,
T.€.B PAANYyCe MAKCHMAILHON cropocTH. [asA TMOAHOTH HPHBOXUTCA HPOCTOe MOZAPUIMpO-
BaHHOE TOJNysMIMpuYeckoe ypasHenne. Koxeunsit pesyabrar fusa BEyTpennelt oGmxacrn me
IPOTHBOPEYNT PE3yJIbTATAM IJA NpefelbHHX CIyaeB KOAbIeBOH I'eOMETPHH, A MMEHHO JIJIA
TpyOH M NPAMOTOYHOrO KaHaiza. OTMedaeTcs, 4TO pacplefeleHHe CKOPOCTH. BO BHemrHel
006JaCTH KOABIEBOTO KAHAJIA TOYHO ONKUCHBAETCS C NOMOMBIC IPOCTHX JOrapUPMAYECHUX

33KOHOB.
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