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THE SIMILARITY HYPOTHESIS APPLIED TO TURBULENT 
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(Receives 1 April 1965 and in ~ev~~~~~rrn 31 May 1965) 

Abstract-The velocity distribution in fully developed turbulent flow in an annulus is investigated 
using Goldstein’s [l] extension of the similarity hypothesis of von Karman. The theoretical result is 
compared with the experimental data of various investigations. The validity of the similarity theory 
in the study of turbulent flow in an ammlus is examined using the m~u~ments of the turbulence 
characteristics of Brighton and Jones !2]. The results indicate that the adoption of the theory is justi- 
fied in the outer region of the flow only, i.e. outside the radius of maximum velocity. A particular 
form of the theory, which was found [l] to predict the velocity distribution accurately in the simpler 
pipe flow geometry, is used in the annulus study. The analysis of the annular flow is such that the 
computed results for the pipe can then be used to advantage. 

The simpler correlations for the velocity distribution in the form of the “law of the wall” are briefly 
discussed, and the inadequacy of these in the inner region of the flow, i.e. inside the radius of maximum 
velocity, is pointed out. For completeness, a simple modified equation of a semi-empirical nature is 
presented. The final result for the inner region is compatible with the results for the limits of the annular 
geometry, viz. the pipe and the parallel wall channel. It is noted that the velocity distribution in the 

outer region of the annuius is accurately described using the simple logarithmic laws. 

NOMENCLATURE 

b, bl, bz, A, B, k, kl, kz, constants; 
1, 

mixing length, or character- 
istic length; 
velocities (u in the direction of 
the mean flow); 
fluctuations of velocities; 
friction velocity; 
friction velocity parameter; 
friction distance parameter; 
shear stress ; 
radius; 

inside radius of maximum 
velocity, ma, or inner wall; 
outside radius of maximum 
velocity, rm, or outer wall; 
point of maximum velocity; 
value of the outer radius in 
pipe flow. 

17 = r/rs, fl = T/Q, # = r]rr, dimensionless 
radii ; 

a = r2h radius ratio; 
P, density; 

$7 .fi, 
kinematic viscosity; 
functions; 

Y, distance from a wall. 

Suffixes 
H’, wall ; 

* The Department of Mechanical Engineering, The 
University of Liverpool. 

t The Department of Mechanical Engineering, The 
College of Technology, Liverpool. 

Superscripts 
A single dot denotes first differential coefficient 

with respect to radius. 
A double dot denotes second differential 

coefficient with respect to radius. 

1. INTRODUCTION 

THE LAWS of the velocity distribution in tur- 
bulent flow adjacent to a solid boundary and in 
ducts are essentially of a semi-empirical nature. 
The ideas, concepts and theories are well known, 
and are recorded in standard works in fluid 
mechanics and heat transfer. 

A major contribution in this field of study is 
the similarity theory of von K&man. In the 
present work, Goldstein’s [I] extension of 
K&-man’s theory to axisymmetric flow is of 
special interest and it suffices here to present the 
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results of this work. According to Goldstein [l], 
for three dimensional turbulence, the character- 
istic length, the stress and the rate of transfer of 
(7. u) are respectively given t 

(i) I := kti/(ii ~~~ tij/ 

(ii) 171 pP$ 

and (iii) 

We pay particular attention to (iii) of equation 
(l), because this leads to an equation which 
shows excellent agreement with the observed 
velocity data in pipe flows. The final result for 
the velocity is given by Goldstein [I], as 

where IJ ---m r/r”, and the constants 1~ and b are 
chosen so as to make the equation suit the 
experimental data over the region where the 
hypothesis is most likely to be valid. 

In this work, we will examine the velocity 
distribution in axisymmetric turbulent flow in an 
annulus. Goldstein’s theory will be employed 
because it accurately predicts the velocity distri- 
bution in axisymmetric flow in a pipe. 

2. VELOCITY DISTRIBUTION OF TURBULENT 
FLOW IN AN ANNULUS 

A brief outline of some of the methods of 
correlation of turbulent flow in an annulus has 
been given by Barrow [3]. 

Probably the simplest approach which is 
used, is to employ the familiar logarithmic law 
for zero pressure gradient, that is: 

II-+ = (l/k)lnyb -t B (3) 

According to Goldstein [4], this equation might 
be expected to apply to pressure flows to a first 
approximation. In the annulus, equation (3) has 
been employed with the same constants as those 
used in the pipe. For example, Deissler and 
Taylor [5] have (used k = 0.36 and B = 3.8 for 
the regions inside and outside the radius of 
maximum velocity, but in the light of recent 
reliable measurements [6] it is debatable whether 
or not a single form of the equation is valid. 

A further difficulty exists in the case of tur- 
bulent annular flow. The position of zero shear 
is unknown and as a consequence, the wall 
stresses cannot be determined. it is sometimes 
assumed that the radii of zero shear and maxi- 
mum velocity and the radius given by Lamb 171 
are coincident. In Section 5, the experimental data 
is evaluated using the actual radius of maximum 
velocity: the theoretical work is based on Lamb’s 
radius. Little error is involved in this procedure 
provided ~1. is not much larger than 3. In both 
cases, zero stress is assumed to occur at the 
radius of maximum velocity. 

It would appear that an equation of the form. 

would be more in keeping with the pipe result, 
but an examination of the experimental data 
suggests that modification of the pipe equation i> 
necessary only in the region inside r,,,, the values 
offi andfA(a) being given in Appendix I. 

Rothfus, Monrad and Seneca1 [9] have used 
equation (3) for the annulus. the “wall distance” 
being a complex function of the actual wall 
distance. With u U/U,Z. the equation was 
found to be valid both inside and outside f,,, 
and more recent data [6] are found to be in 
support of this correlation. 

It can be seen that attempts to correlate 
velocity distribution in the annulus have been 
largely influenced by the well established results 

for the pipe. In some respects this has tended to 
suppress more detailed investigations which have 
their origin in the study of the fundamentals of 
the flow. In the following section, the velocity 
in turbulent flow in the annulus is studied using 
one set of the basic results of the similarit!, 
hypothesis according to Goldstein [I]. It is first 
necessary to ascertain that the assumptions made 

in the theory are adequately fulfilled by the flow 
conditions in the annulus. In this connection, the 
turbulence characteristics in the annulus will bc 
examined along with those for the simpler pipe 
flow. This might be of some help in assessing the 
accuracy of the final result. 

3. TURBULENCE CHARACTERISTICS 

It appears that little has been done in the 
measurement of turbulence characteristics in 
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annular flows. Probably the most recent data on 
velocity fluctuations in turbulent flow in an 
annulus is that of Brighton and Jones [2]. Some 
of their data has been compiled in a form which is 
more suitable for present purposes, and is shown 
in Fig. 1, along with some results of Laufer for 
pipe flow [lo], (see also reference 8). 

08 
I I I 

I I I I 

04 

02 

0 02 04 06 OB k0 

Y/(r,-Il 

(a) Dnnulus 

( -a=,.m, ---a=,9 

lw =194000 [2] ) 

08 _?I I I L 
/ 

I 

I I I I I I 
0 02 04 06 0.8 10 

Y/G 

(bl pipe 

FIG. 1. Turbulence characteristics. 

We note that in the similarity theory, the --- 
ratios 2: q:T: ~1~1: awl: ~1~1, should be con- 
stant. This is clearly not so in either flow 
geometry, the greatest departure from the 
assumption occuring in the region of zero stress 

this ratio on both position and radius ratio. 
Brighton and Jones [2] have already observed 
that the pronounced curvature of the curve of 
G/z& in the inner region of an annulus is 
accompanied by a marked departure of the 
velocity distribution from the law of the wall. 

- -. 
The large variation of urui/u~ m the inner region 
must also lead to large deviations from a 
prediction based on the similarity hypothesis 
which assumes a constant value for this ratio. 
It can be clearly seen by comparing Figs. l(a) and 
(b), that the magnitude and distribution of the 
turbulence characteristics in the pipe and annuli 
are not markedly different outside rm, but inside 
rm there is poor agreement particularly as far as 
the ratio involving Gi is concerned. 

It is concluded therefore, that the assumption 
concerning the ratios rf etc. is satisfactorily 
met with in the outer region of an annulus while 
inside the radius of maximum velocity the 
situation is far from the idealised one. It will be 
seen later, when the theoretical and experimental 
velocity distributions are compared, that there is 
excellent agreement in the outer boundary layer. 
The agreement in the inner region is however 
disappointing. 

With these observations on the turbulence 
characteristics in mind, we now proceed to 
derive a velocity law for turbulent flow in an 
annulus. It is felt that the observations on the 
similarity between the turbulence parameters in 
the pipe and annulus provide adequate justifica- 
tion for using similar approaches for the de- 
termination of velocity distributions. 

This is certainly true in the outer area; in the 
inside region of an annulus, the procedure is 
questionable and less likely to yield a good 
correlation. 

and near the wall where for example the value of 
Gapproaches zero. In these regions therefore, 

4. THEORETICAL ANALYSIS 

we must not expect good agreement with theory (i) Velocity distribution outside the radius of 

in either geometry. The most interesting feature maximum velocity 

of the data for the annulus geometry is the The shear stress, 7, in an annulus is written, 
-- 

variation in the quantity uivi/u~ across the flow 
section and its dependency on the radius ratio, 

--. 
a. In the outer region ulvl/u~ 1s fairly constant, 

(5) 

whereas inside the radius of-maximum velocity Equation (5) is easily derived from momentum 
there is a noticeable dependency of the value of considerations assuming that zero stress occurs 

H.M.-4Y 
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at rm. With the expression for I, equation (1) (iii) 
then becomes 

With 0 x (r/r& CC = (rz/rl) and &t/h E co 
very near to the outer wall, equation (6) can be 
integrated to 

On integrating equation (7) and substituting the 
appropriate boundary conditions, an equation 
for the velocity defect is obtained as 

An alternative and more useful form of the last 
equation is possible using Lamb’s result for 
rm, and ~~2 from equation (5). Equation (8) is 
then transformed into 

where bz serves to improve the agreement be- 
tween the theoretical result and the experi- 
mental values. 

Goldstein’s tabulated values of the integral 
junction of equation (2) can be used to advantage 
here, because the integral in equation (9) can be 
written as 

It is worth noting that theointegrals on the right 
hand side of equation (10) are related to the 
Incomplete Beta Function*, B&2/3, l/2). 

* The Incomplete Beta Function, B, (p, y), is defined as 

B, (p, q) = 7 xp-l . (I - x)4--1 dx. 
0 

In any particular problem, the value of the 
last integral in equation (10) is constant, where- 
as the second integral is tabulated [l]. The 
compatability of the final result with the pipe 
result is to be noted; as rnEmm’ 0, 8,~ 0 and 
Equations (2) and (10) are then identical. 

A similar analysis to that described in Section 
4 (i) yields 

where # .-: (r/rl). kl and bl are chosen for the 
best fit of equation (11) to the inner region data. 

5. COMPARISON BETWEEN THE THEORETICAL 

PREDICTION AND EXPERIMENTAL RESULTS TN 
ANNULAR FLOW 

Figures 2(a) and 2(b) show a wide variety of 
experimental data for annular flow plotted in the 
usual manner, the Reynolds numbers and the 
radius ratios being as indicated. 

A close examination of the points in Fig. 2(a) 
(outer region) will show that, with the exception 
of the data for a = 80.72, there is no detectable 
dependency on Reynolds number. The annulus. 
for which a = 80.72, shows [6] a radius of 
maximum velocity very much less than that 
predicted by Lamb [7] for laminar flow. The data 
for the more practical values of a are in very 
good agreement with the theoretical curve over 
the middle region, when bz ---. 0.8 and k:! 
+0.148. 

The corresponding values for the inner region 
are plotted in Fig. 2(b). Here there is little 
effect of the Reynolds number but a marked 
dependency on the radius ratio. It is evident that 
it is impossible to correlate the inner velocities 
by a single equation, but equation (11) with 
hi :m - 0.8 and kl =z CO.148 is shown for 
comparison purposes. 

A possible reason for the discrepancy be- 
tween theory and practice for the region inside 
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Fro. 2. The velocity distribution in turbulent flow in an annulus, and its correlation. 

(a) Outside radius of maximum velocity. (b) Inside radius of maximum velocity. 

rm has already been given in the Section on 
Turbulence Characteristics. The assumption that --_ 
(~~~~~~~)~ is constant is not felled there, and 
the value of this ratio appears to be a function 
of both position and radius ratio. The excellent 
agreement between the theory and experiment for 
practical radius ratios outside the radius of 
maximum velocity is in accordance with the --“. 
constancy of (~1~1/~~)2 m that that region. 

6. CONCLUSIONS 

It has been found that the use of a form of the 
similarity theory of Goldstein [1] is justified in 
predicting the velocity distribution outside the 
radius of maximum velocity in turbulent 
annular flow. An explanation for the difference 
between theory and experiment in the inner 
region has been given. 

While the modified “laws of the wall” are of 
more direct use, the present analysis and con- 
siderations afford a deeper insight into the 
unders~nding and the prediction of the tur- 
bulent velocity field. There is accordingly a need 
for further detailed measurements of the nature 

and structure of turbulent flow in the annulus 
geometry. The position of the radius of maxi- 
mum velocity can, for example, be measured 
accurately by direct experimentation but the 
location of the position of zero shear is as yet 
undetermined. We have found that the follow- 
ing expression correlates all the data for the 
radius of maximum velocity used in this paper: 

r,=rl. JfS) . (~~027 (12) 

(u not greater than 10) 

Compared with the empirical correlation of 
Leung, Kays and Reynolds [12], equation (12) 
predicts a smaller deviation from Lamb’s radius 
of maximum velocity. 
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APPENDIX 

For engineering purposes, a modified “law of 
the wall” is adequate for the correlation of the 
velocity distribution inside the radius of maxi- 
mum velocity, and here we derive an equation of 
the form 

To determine ji(a) and OX, a whole range of 
data [2, 3, 6, 8, 1 l] has been examined. It should 
be noted that outside rnL, the simple form of 
equation (A. I) viz. equation (3) suffices,fl(u) and 
j”(a) both having a value equal to unity. It is 
difficult to determine the best values of k and B; 
both Deissler’s law [S] and the Prandtl-Nikuradse 
law fit the data well. The agreement between 
equation (3) and the data for the outer region of 
the annulus might be expected, because the 
ratio of the boundary layer thickness to outer 
wall radius is often much less than that for the 

.ll__._ 
Frc. Al. The determination of the “constants” in the 
“modified law of wall” for the inner region of the 

annular flow. 

pipe and consequently the lateral curvature 
effects are reduced. Inside rwl, however, there is a 
pronounced curvature effect of the inner wall. 
and fi(c~) and jz(a) are found [6] to depend on (1. 

Figure AI shows various values of ji(a)/k 
and f$a). B. The shapes of the curves are such 
thatfifaf/k and,fz(a). B take the accepted values 
for symmetrical two dimensional flow when 
( I/cL)~ i 1, which must be the case if the corre- 
lation is to be meaningf~i. The recommended 
equations are : 

(i) ,ft(a)/k :- 2.7. 

It should be noted that in determining this 
correlation reference need not be made to the 
position of maximum velocity. 
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R&sum&-La distribution de vitesse dans un ecoulement turbulent ~ti~rement devetoppe a I’interieur 
dun tuyau annulaire est etudie en utilisant l’extension par Goldstein [I] de l’hypoth&se de similitude 

de von KBrmAn. Le resultat theorique est compare avec 1es don&es experimentales de plusieurs 
etudes. La validite de la theorie de la similitude darts Etude de l’kcoulement turbulent darts un tuyau 
annulaire est examinc en employant les mesures des caracteristiques de turbulence de Brighton et 
Jones 121. Les resultats indiquent que l’adoption de la th&orie est justifiee dans la region 
externe seulement de l%coulement, c’est-a-dire en dehors du rayon de vitesse maximale. Une 
forme particuliere de la theorie, que l'on avait trouvCe [I] p&dire avec prkision la distribution de 

vitesse dans la gkomhrie plus simple dun ecoulement dans un tuyau circulaire, est employee dans 
l'etude du tuyau annuIaire. La theorie de l%coulement annulaire est telle que les resultats calcules 
pour le tuyau circulaire peuvent alors &tre utilids av~~geu~ment. 

Les correlations plus simples pour la distribution de vitesse de la forme de ia “loi de la paroi” sont 
discutees brievement, et l’insuffisance de ces correlations dans la region inteme de l’ecoulement, 
c’est-a-dire a l’intirieur du rayon de vitesse maximale, est signal&e. Entin, une equation modified simple 
et de nature semi-empirique est present&e. Le resultat final pour la region inteme est compatible avec 
Ies resultats pour les limites de la geom&rie annulaire, par exempIe Ie tuyau circtdaire et la conduite a 
parois paralleles. On a remarque que la distribution de vitesse dam la region exteme du tuyau annulaire 

est decrite avec precision a I’aide de lois logarithmiques simples. 

Zusammenfassung-Die Geschwindigkeitsverteilung bei ~011 ausgebildeter turbulenter Stromung im 
Ringspalt wird mit HiIfe der Er~iterung der von K~rm~nschen ~hnlichkeitshy~thcse nach Goid- 
stein [I] untersucht. Das theoretische Ergebnis wird mit experimentellen Daten verschiedener Unter- 
suchungen verglichen. Die Giiltigkeit der Ahnlichkeitstheorie fiir turbulente Striimung im Ringspalt 
wird auf Grund der Messungen der Turbulenzcharakteristikcn von Brighton und Jones [2] nachgepriift. 
Die Ergebnisse zeigen, dass die Annahme der Theorie nur fiir den iiusseren Bereich der Stromung, 
d.h. ausserhalb des Radius griisster G~chwindigkeit ger~htfertigt ist. Eine besondere Form der 
Theorie [l] nach der sich die Geschwind~keitsverteilung in der einfachemn Rohrstrijmung genau 
bestimmen llsst wurde fiir die Ringspaltuntersuchung verwendet. Ftir die Analyse der Ringstromung 
werden die Rechenergebnisse ftir das Rohr vorteilhaft angewandt. Die einfacheren Korrelationen 
fiir die Geschwindigkeitsverteilung in Form des “Wandgesetzes” sind kurz diskutiert und such ihre 
Unzullssigkeit ftir den inneren Bereich der Str~mung, d.h. i~erhalb des Radius grosster Geschwin- 
digkeit dargelegt. Zur Vervollst~ndigung wird eine einfache modiiierte Gleichung halbempirischer 
Natur angegeben. Das Endergebnis ftir den inneren Bereich ist vertraglich mit den Ergebnissen ftir 
die Grenzen der Ringspaltgeometrie, namlich dem Rohr und dem parallelwandigen Kanal. Es ist 
gezeigt, dass die Geschwindigkeitsverteilung im Busseren Bereich des Ringspaltes mit Hilfe einfacher 

logarithmischer Gcsetze beschrieben werden kann. 

AHHOTaqUsr-PaCnpeAeneHEle CKOpOCTA R IIOJIHOCTbIO pa3BHTOM Typ6yJIeHTHOM IIOTOKe J3 

KOJIbr(eBOM KaHaJIe MCCJIeAOBaJIOCb C IIOMOmbIO 0606II~eKKOti ~OJlh~tIITe~HOM I'llIIOTe3bI IIO- 

~06an EEapiMaHa.npHse~eHoc,paBHeH~eTeopeT~secnorope3yJrbTaTac3Kc~ep~MeHTa~b~~MM 

~aHH~~~ MHOrHX ~CC~e~OB~~~. CupaBe~~~BOCTb TeOpMM ~0~06~~ )$lR ~3yqeH~~ rypBy- 
JIeHTIiOI'O IIOTOKa B KOjrbqeBOM HaHaJie TIpOBepReTiYI, MCIIOJIb3yfi ~3MepeH~~ Typ6yJIeHTWIX 

XapaKTepHCTElK EpafiTOHa II @OHCa. Pe3yJIbTaTbI IIOKa3bIBaH)T, YTO 3Ta TeOpW IIPIJ- 

MeIiMMa TOJIbIEO AJXFI BHemHet o6nacTkr nOTOKa, T.e. X4 PaAHyCOM MaKCHMaJIbHOti CKOpOCTII. 

AJIFI H3yYeHHR I'lpOqeCCOB B KOJlbl[eBOM KaHaJIe HCuOJIb3yeTCR oco6aB @OpMa TeOpEti, 

KOTOpaR, COrmacHO pa6oTe [I], AaeT Bo3~o~HocTb lIpe~cKa3aTb pac~pe~e~eH~e CKOPOCTE 

IIOTOKOB B Tpy6aX C 6onee IIpOCTOt reO~eTp~e~. hxanxa ZlOTOKa B KOJIb~eBOM KaHaxe 

IiOCTpOeH TaK, 'JTO AaHHbIe, IXOJIyYeHHbIe &JIH Tpy6bI, MO)KHO C YCIIeXOM IICIIO~b30BaTb AJIFI 

flpyrvrx cnysaels. 

KpaTKO paCCMaTpHBaIOTCR 6onee lIpOCTbIe KOppeJIRQHlr AJIR pacnpe~eneeaR CKO~OCTE B 

BK,Qe 43aKOHa CTeHKH)) ti OTMeYaeTCR WX He~O~eaTO~HOCTb BO ~HyTpeHHe~ o6nacTx noToKa, 

T.e.B pa@fyCe ~aKC~Ma~bH0~ CKopOCTH. ,&DI llO,?ROTbl ~p~BO~~TC~ IIpOCTOe MO~~~~~~o- 

BaHHoC! uoJIy3iWIKpHVeCKOe YpaBHeHEle. HOHeVHbIfi pe3yJIbTaT AJIR: BHyTpeHHet o6nacTn He 

JIpOTnROpeWJT pe3yJIbTaTaM JJSUI IIpeAenbHbIX CJlyaeB KOJlbqeBOiB X'eOMeTpHU, a IZMeHHo AJIR 

Tpy6bI M IIPHMOTOYHOI'O KaHaJIa. OTMeYaeTCR, 9TO paCpIIeAeJIeRlre CKOpOCTM BO BHemHe& 

06JIaCTH KOJIbqeBOFO KaHajIa T09HO Ou~C~BaeTC~ C IIOMOmbIO IZpOCTUX ~orap~~M~~eQ~(~X 

3aKOHOB. 


